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Abstract. A theory is presented to predict the effective shear viscosity of concentrated
dispersions in steady state shear flow as a function of the volume fraction, particle size,
interparticle interactions, and shear rate. Shear thinning has been qualitatively argued to be
a result of shear-induced change in microstructure, which we shall discuss in terms of the
distribution function. Analysing the distribution function and the microscopic stress tensor, we
have derived a memory function in steady state shear flow. It is used to calculate all the key
features of shear thinning quantitatively without any adjusting parameter. The predicted shear-
rate-dependent effective shear viscosity is in good agreement with the experiments of sterically
stabilized colloidal suspensions. Since shear thinning has been observed in steady state shear
flow as well as in oscillatory shear flow, the difference between these two flows will also be
discussed in terms of the distribution functions and structural relaxations.

1. Introduction

Colloidal dispersions have interesting and complex flow behaviour because the macroscopic
stresses are sensitive to the nonequilibrium microstructure, which in turn depends on the
composition, flow field, and particle interactions. Experimental data [1–5] for shear viscosity
exhibit two key features: they diverge strongly as the particle volume fraction (φ) of
colloidal particles is increased and they exhibit strong shear rate dependence, decreasing
with increased shear rate. The shear viscosity is Newtonian for dilute suspensions, and
becomes non-Newtonian (shear rate dependent) for semidilute suspensions [3, 6–8]. Shear
thinning becomes more pronounced asφ approaches a percolation thresholdφc. This unusual
phenomenon has been observed for colloidal dispersions, but not for polymer solutions.
These effects have been qualitatively argued (see [2] where additional references can also
be found) to be the result of shear-induced microstructure within the suspension; however,
there is no quantitative theoretical analysis available at the present time. It is the purpose
of this paper to develop one.

Polymeric liquids [9–11] also exhibit non-Newtonian flow behaviour, but they recover
from finite stresses and do not show the above-mentioned shear thinning asφ → φc. This
reflects the fundamentally different microstructures in colloidal suspensions and polymeric
liquids. In contrast to the long-range interactions in macromolecular systems, short-range
interparticle forces govern the microstructure in colloidal dispersions and the magnitude
decreases with increasing separation. In spite of these differences, the microscopic theory
of polymeric liquids [9, 10] should serve as a useful basis in the present study. Shear
thinning is generally believed to result from shear-induced change in microstructure. On
the basis of the approach given in [9] and [10], the microstructure is characterized in terms
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of the distribution function (ψ) in section 2. An effective-medium approximation forψ will
then be used to solve our problem. Instead of using the usual Kirkwood formula [12] for
the stress tensor for polymer solutions, we find that it is more convenient in the case of
disperse systems to use the method of statistical mechanics to analyse the stress tensor in
the derivation of the effective shear viscosity in section 3. The main result of the shear-
rate-dependent shear viscosity in steady state shear flow is derived in section 4. In the final
discussion of section 5, the salient features of non-Newtonian behaviour in the vicinity ofφc

are calculated. The basic differences between the nonlinear viscosity in steady state shear
flow and the linear dynamic viscosity in oscillatory shear flow are discussed.

2. Colloidal dynamics

The dynamics of disperse systems can be described by the time-dependent distribution
function ψ(R1, R2, . . . ,RN, t) whereRi is the position of theith colloidal particle andt
is time. The probability (ψ) of finding a particle at a given point and time is governed by
the equation of continuity [9]

∂ψ
∂t

= −
N∑

i=1

(
∂

∂Ri

· Ṙiψ
)

(1)

whereṘi is the velocity of theith particle. This equation simply states that when a particle
leaves one location it has to turn up in another. Equation (1) needs an expression for
the velocityṘi , which can be obtained by analysing the equation of motion of individual
particles. Let us begin with dilute suspensions: the colloidal particle can move freely
through the surrounding solent molecules. Both hydrodynamic and non-hydrodynamic
forces are acting on the particle. The equations of motion can be written down as

miR̈i = −ζ0(Ṙi − vi ) + Fi i = 1, 2, . . . , N (2)

whereR̈i is the acceleration of theith particle andmi is the mass. The first term on the
right-hand side is the hydrodynamic drag,ζ0 = 6πη2a is the frictional coefficient,η2 is the
solvent viscosity, anda is the particle radius.vi is the flow velocity which would have
existed at the point of location of theith particle if this particle had been absent. The total
non-hydrodynamic force is [13]

Fi = −(∂/∂Ri )(kT ln ψ + U) (3)

wherek is the Boltzmann constant andT is the temperature. The first term is the Brownian
force, and the second is the interparticle force with its potential energyU . The acceleration
term on the left-hand side of equation (2) is assumed to be negligible. That is

Ṙi = (1/ζ0)Fi + vi . (4)

For concentrated dispersions, (4) can be generalized to

Ṙi =
N∑

j=1

HijFj + vi (5)

whereHij is the mobility tensor. As mentioned in (2),vi in (4) and (5) is due to the imposed
flow field, which is negligible in linear oscillatory shear flow [8] but will be important in the
present study of nonlinear steady state shear flow. More specific analysis and discussion
will be given in sections 4 and 5. (5) accounts for the many-body interactions between
particles and solvent molecules in a formal way. Of course, itcannotbe solved as it stands
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and approximations have to be made later in order to proceed. Combining (1) and (5), we
obtain

∂ψ
∂t

=
N∑

i=1

∂

∂Ri

·
[ N∑

j=1

Hij

(
kT

∂ψ
∂Rj

+ ψ
∂U

∂Rj

)
− viψ

]
(6)

which is termed the Smoluchowski equation for disperse systems. It may also be called the
Fokker–Planck equation. Formally, equation (6) looks quite similar to that for polymeric
liquids [10].

In practice (5) and (6) will be solved by using an effective one-particle approximation
in a self-consistent manner. Physically, it consists of a colloidal particle moving through
the surrounding medium whose viscosity is equal to theeffectiveshear viscosity (η) of
the dispersion.η has yet to be determined. This allows for a nonlinear response to the
interactive system. In the self-consistent model, the mobility tensor is written as

Hij = [I/ζ(φ)]δij (7)

whereI is the unit tensor, andζ(φ) = 6πaη(φ). For dilute solutions inshear(ζ(φ) = ζ0),
(7) has the exact form used in Rouse’s model (see (4.3) in [10]) and in Debye’s free draining
model. Since the general philosophy of Hartree–Fock [14] was introduced, the use of the
one-particle self-consistent approximation to solve a many-body problem has been published
frequently in various forms for different subjects with great success. This approximation has
also been mentioned in the literature as an effective-medium theory. The ‘particle’ can be
thought of as an electron, molecule, Brownian particle, or filler in composites in the study of
the electrical [14], optical [15], mechanical [16], and rheological [17] properties of complex
materials. In the present case of colloidal dispersions, the one-particle approximation has
already been utilized in analysing the shear viscosity [17]. Shear thinning is the topic of
this paper. The one-particle approximation with effective viscosity will be solved self-
consistently with (12), (20), (21), (22), (24), and (25) to be derived and discussed in the
rest of the paper. The effect of microstructure due to the many-body interactions mentioned
in (5) and the interparticle force in (3) are taken into account collectively in terms of the
effective viscosity. Using (7), we obtain

∂ψ
∂t

= ∂

∂R
·
[
D

∂ψ
∂R

− (vψ)

]
(8)

whereD = kT /ζ is the effective diffusion coefficient. BothD and ζ are functions ofη.
What we have in (8) is the reduced distribution function of a Brownian particle which is
related to (1) formally by

ψ(1)(R1, t) =
∫

ψ(R1, R2, . . . ,RN, t) dR2 dR3, . . . , dRN.

For simplicity, we have dropped the superscript ofψ(1) and subscript ofR1 on the left-
hand side of the above equation as the symbol shown in (8). The further discussion of the
reduced distribution function can be found in a standard text of statistical mechanics, and
the specific discussion of Brownian particles in [18].

The shear-induced change in microstructure is described by the particle distribution
function ψ in (8) under the influence of a macroscopic velocity field. Usingψ, we shall
analyse the effective viscosityη as a function ofη2, a, φ, U , and shear rateγ in the rest
of the paper.
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3. Effective shear viscosity

In the development of microscopic theory of the non-Newtonian viscosity [9, 10], the
principal aim is the evaluation of the stress tensor. By using the method of statistical
mechanics, theconfiguration averageof the local stress tensorσαβ created by a given flow
field v(r) and Brownian motion in the system is determined by

σαβ(r) =
∫

σαβ(r, R)ψ(R) dR. (9)

Thespatially dependentstress tensor on the left-hand side of (9) is equal to the configuration
average of particles with the stress tensor and the distribution function on the right. (9) has
the general form of the statistical average of a physical quantity, which can be a scalar,
vector, or tensor. The exact form of (9) can be found in [10] (see equation (3.117) on p 71).

Spatial averagingσαβ(r) over the total volumeV containingN colloidal particles gives
the spatially independentstress components:

〈σαβ〉 = 1

V

∫
v

σαβ(r) dr = 1

V

[ ∫
v2

σαβ(r) dr +
N∑

i=1

∫
v1

σαβ(r) dr

]
(10)

whereV is the total volume andV1 and V2 are the volumes of the particles and solvent,
respectively. In general, the second-order stress tensor is related to the second-order strain
rate tensor by a fourth-order viscosity tensor [17]. Since we are only interested in the shear
flow in this paper, the effective shear viscosities of disperse systems can then be obtained
from

ηαβ ≡ 〈σαβ〉/2〈eαβ〉 = 〈σαβ〉/2e0
αβ α 6= β (11)

wheree0
αβ is a constant strain rate applied to the system. Substituting (11) into (10) and

noting that the dispersed system as a whole has to be macroscopically homogeneous, i.e.,

1

V

∫
v

eαβ(r) dr = e0
αβ

we obtain the effective shear viscosity of hard-sphere dispersions

η = η2(1 − φ) + φ〈σαβ〉1

2e0
αβ

α 6= β (12)

where the hard-sphere fluid is isotropic (i.e.η = ηαβ), φ = ∑
(volume of particles,

V1) = NV1/V is the volume fraction, and

〈σαβ〉1 = 1

V1

∫
v1

σαβ(r) dr. (13)

(8), (9), and (12) together may be regarded as a constitutive equation for a given velocity
field. The distribution function is obtained from (8) and the nonlinear viscosity from (12).

4. Steady state shear flow

Probably the single most important characteristic of concentrated dispersions is the fact that
they have a shear-rate-dependent viscosity. Choose the centre of a spherical particle as the
origin of spatial coordinates, and consider the steady shear flow:

v = γ zj (14)
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where γ = 2e0
yz is the shear rate. The inverse of the shear rate (1/γ ) is a time

scale characterizing the shear thinning and structural relaxation of colloidal dispersions.
Substituting (14) into (8), using (9), and notingψ vanishes at infinity, we find by partial
integrations

D
d2σyz

dy2
+ γ z

dσyz

dy
= 0. (15)

The solution of (15) is

σyz(r) = A + B exp

(
−γ ζyz

kT

)
(16)

whereA andB are constants. Substituting (16) into (13) gives

〈σyz〉1 = A + B

V1

∫
v1

(
1 − γ ζyz

kT
+ · · ·

)
dr. (17)

Introducing the polar anglesθ andϕ,

y = r sinθ sinϕ z = r cosθ (18)

and notingγ ζyz is the energy induced by the flow field, one obtains

〈yz〉1 = 3

πa3

∫ π

0

∫ π/2

0

∫ a

0
(r2 sinθ sinϕ cosθ)r2 sinθ dr dθ dϕ = 2a2

5π
. (19)

The shear thinning phenomenon has been observed in steady state shear flow as well as
in oscillatory shear flow. Therefore, it is important to see the essential difference in the
structural relaxation of these two flows to be discussed in section 5. In order to make direct
comparison later, the shear-rate-dependent effective shear viscosity (η) derived from (12)
and (16)–(19) is recast in the form of (26) for oscillatory shear flow:

η(γ, φ) = η∞(φ) + [η0(φ) − η∞(φ)]Q[η(γ, φ)] (20)

and

Q[η(γ, φ)] = exp

[
−2.4φ

a3γ

kT
η(γ, φ)

]
(21)

whereη0 andη∞ are the limits of viscosity at low and high shear rates. Bothη0 andη∞
are independent of time and space. We have shown [8] thatQ is the memory function
which goes to unity asη → η0, and to zero asη → η∞. The definition ofQ as a
memory function in the form of (20) is very general and applies to all materials exhibiting
structural relaxations [19]. There isno adjusting parameterin Q which includes the effects
of Brownian motion and shear-rate-dependent structural relaxation. The two constantsA

andB in (16) are related to the limits of viscosityη0 andη∞ in (20) by

η∞(φ) = [Aφ + B(1 − φ)]/γ

and

η0(φ) − η∞(φ) = B/γ.

In addition to the shear rate, bothη and Q are functions of particle size, concentration,
and limits of viscosity. (20) and (21) have to be solved numerically. Figure 1 shows
the comparison between the calculated results and experimental data [1, 4] for 50%
monodispersions of polystyrene spheres of various sizes in different media such as water,
benzyl alcohol, ormeta-cresol. The diameter of the hard spheres varies from 46 to 180 nm.



8150 T S Chow

Figure 1. The calculated relative shear viscosity versus reduced shear rate (from (20) and (21))
is compared with the experimental data [1, 4] for polystyrene spheres of various sizes dispersed
in water, benzyl alcohol, andmeta-cresol. The volume fraction isφ = 0.5.

5. Results and discussion

Hard-sphere repulsion provides a convenient basis for analysing the rheological behaviour
of stable dispersions. When contributions from the hydrodynamic and intermolecular
interactions are included in the analysis of stable hard-sphere dispersions, the shear
viscosities at the low- and high-shear-rate limits are derived.

The hydrodynamic effect is the dominant effect on the relative shear viscosity at the
high-shear-rate limit [17, 20]:

ηr(∞, φ) ≡ η∞(φ)/η2 = exp(2.5φ/(1 − φ)). (22)

The difference in the limiting viscosities at the low and high shear rates is a result of the
energy being dissipated through the loss in kinetic energy, which can be related directly to
the interparticle potential by [21]

1ηr(φ) = −
∫ ∫

ρ(r12)r12
∂V (r12)

∂r12
dr1 dr2 (23)

whereV is the nondimensional pair potential,r12 = |r1 − r2| is the distance between the
centres of two spheres, andρ is the pair distribution function. For dilute suspensions, we
consider the interparticle potential(U) has the form [8]U(r) = −u for r < 2a and zero
for r > 2a, whereu is called the repulsive interparticle potential. The equilibrium radial
distribution function isg0 = V = exp(−U/kT ). For incompressible fluids, we approximate
ρ ∼ g0ψ with ψ being determined by the Kirkwood–Smoluchowski equation [22] which is
a special case of (6) and (8). This leads to1ηr of dilute suspensions. A detailed analysis
and in-depth discussion ofU , g0, ψ, and 1ηr can be found in [8]. The ‘hard’ sphere
considered here has very high butnot infinite rigidity, which is always true in a real system.
Therefore, the pair potential is finite.

As the volume fraction of colloidal particles increases, the many-body interactions
between the particles and the equilibrium microstructure have been included in the analysis.
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The interactions of the particle as it propagates through a dense dispersion has been evaluated
by using the Feynman diagram. When the detailed analysis is carried out, an expression
for the zero-shear viscosity is derived [8]:

ηr(0, φ) ≡ η0(φ)/η2 = ηr(∞, φ) + (φ/φc)
2/[1 − (φ/φc)

2]P. (24)

Here the probabilityP is produced by the interactions of the colloidal particles with each
other and solvent molecules. It is equal to the maximum packing fraction of a unit structural
volume filled with spheres. The percolation threshold is (derived from (51) in [8])

φc = {(5/P )[2 exp(u/kT ) + 3]}1/2/6[exp(u/kT ) − 1] (25)

which is a decreasing function of the repulsive interparticle potential (u) shown in figure 2,
where P = 0.68 is a theoretical value in the calculation for the packing of stable hard
spheres [8]. At moderate repulsive potentials, (25) scales simply asφc ∼ (u/kT )−1.34 for
u/kT 6 2. Figure 2 reveals that a decrease in temperature or an increase in repulsion,
which arises with either charged particles at low ionic strengths or adsorbed polymer layers,
can result in lowerφc [4, 23]. We shall not pursue the details of this discussion as it lies
somewhat outside the focus of this paper.

Figure 2. The relationship between the critical volume fraction and the repulsive interparticle
potential in stable colloidal dispersions.

We have theoretically determinedu/kT = 1.25 for a neutrally stable hard-sphere system
[8], which givesφc = 0.5733. This value is very close to the measured critical volume
fraction [24]. ηr(0, φ) diverges asφ → φc. (22), (24), and (25), and experimental data
[1, 5] for polystyrene lattices in water and for silica spheres in cyclohexane at the limits
of low and high shear rates, are compared in figure 3. Here we have re-emphasized the
important difference between the low and high curves which get bigger asφ increases.
Below volume fractions of 0.3, no shear thinning can be detected [1, 4]. Figures 4–6 are
the result of numerical calculations from (20)–(22) and (24). In figure 4, the relative shear
viscosities at different volume fractions are plotted against the dimensionless shear rate in
the vicinity of the percolation threshold. By using (11), the relationships between the shear
stress and shear rate are obtained as a function ofφ in figure 5. From figures 4 and 5, the
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dependence of the relative shear viscosity on the reduced shear stress is shown in figure 6,
where a dramatic effect of shear thinning in the vicinity of the percolation transition is
seen. This explains what has been reported recently in the literature [2]. The reduced shear
stress isσr = a3〈σyz〉/kT . The transition in figure 6 also occurs whenσr is close to unity.
Therefore, the macroscopic shear stress is at least comparable to the instantaneous shear
modulus (see (30)), and a nonlinear flow behaviour is expected for the system. It may
be worthwhile to point out that no adjusting parameter has been introduced in the present
theory, besides the pre-determined repulsive interparticle potential already mentioned.

Figure 3. A comparison of the calculated and measured [1, 5] limits of shear viscosity as a
function of volume fraction for polystyrene lattices in water and silica spheres in cyclohexane.

In the case of oscillatory shear flow, the dynamic shear viscosityη(ω, φ) is linked to
the memory functionM by

η(ω, φ) − η∞(φ)

η0(φ) − η∞(φ)
= M[ωτ(φ)] =

∫ ∞

0
M(s) exp[−isωτ(φ)] ds (26)

whereω is the angular frequency,τ is the macroscopic relaxation time, and the limits of
viscosity share the expressions given by (22) and (24). We have derived [8]

M(s) = −dK(s)/ds = (1/2s1/2) exp(−s1/2) (27)

whereK is the relaxation function. (26) and (27) correlate well with experimental data [3].
There are significant differences betweenM in (26) andQ in (21). M is a function ofωτ

only and is independent ofη0 and η∞. In contrast,Q is a nonlinear function ofη which
depends on the limiting viscosities. By using (27), the asymptotic expression of (26) is

M[ωτ(φ)] = 0.627(1 − i)[ωτ(φ)]−1/2 asω → ∞. (28)

This −1/2 power law decay in frequency is derived for the dynamic viscosity in oscillatory
shear flow; however, it is not applicable to describe the shear rate dependence of the
nonlinear viscosity in steady state shear flow.

Both (27) and (28) are derived from a distribution function which is governed by a
generalized diffusion equation having the same form as (8) except withv = 0. The shear-
induced microstructure has a Gaussian distribution (see equations (19) and (20) in [8]) for
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Figure 4. The nonlinear viscosity in steady state shear flow versus the nondimensional shear
rate in the vicinity of the percolation transition.

Figure 5. Nonlinear shear stress and shear rate relationships at different volume fractions of
highly concentrated dispersions.

linear oscillatory shear flow, but has a non-Gaussian distribution for nonlinear steady state
shear flow where a significantly larger displacement in the flow field occurs.

The relaxation time and the zero-shear viscosity can be related by

η0(φ) = G0

∫ ∞

0
K[t/τ (φ)] dt = 2G0τ(φ) (29)

where the unrelaxed shear modulusG0 is assumed to be much larger than the relaxed
modulus, and (27) has again been used in (29). The relaxation time is also proportional
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Figure 6. The nonlinear viscosity in steady state shear flow versus the reduced shear stress in
the vicinity of the percolation transition.

to the characteristic time of Brownian motion (a2/D0), whereD0 = kT /ζ0 is the Stokes–
Einstein diffusion coefficient. SinceD0 andG0 are independent ofφ, we have

τ(φ) = η0(φ)/2G0 ∼ (a2/D0)ηr(0, φ) G0 ∼ kT /a3 (30)

where ηr(0, φ) is given by (24). A comparison between the above equation and the
experimental data for silica in cyclohexane is shown in figure 7. We see a sudden increase
in τ(φ) asφ approachesφc. Thus, there is a time–composition superposition forM in the
M versusωτ plot (see figure 9 in [3] and figure 1 in [8]), but not forQ in the Q versus
η2a

3γ /kT plot, where the nonequilibrium microstructure is affected nonlinearly by shear
flow.

6. Conclusions

Analytical expressions, (20) and (21), for the effective shear viscosity of concentrated
dispersions in steady state shear flow have been derived as a function of the volume
fraction, particle size, interparticle potential, and shear rate (or shear stress). Besides the
pre-determined repulsive interparticle potential, there is no adjusting parameter in (20)–(22),
(24) or (25). The predicted shear-rate-dependent viscosity (figure 1) and relaxation time
(figure 7) of neutrally stable dispersions are in good agreement with experimental data.

The microscopically based constitutive equation shows dramatic shear thinning in the
plots of the nonlinear viscosity versus shear stress asφ approaches a critical valueφc,
which depends on the repulsive interparticle potential. Our theory explains an important
non-Newtonian phenomenon in colloidal dispersions—the shear rate has negligible effect
on the nonlinear effective viscosities at lowφ, but has a dominant effect at highφ. There
is a dramatic shear thinning effect in the vicinity of the percolation transition.

The shear-induced microstructure has a Gaussian distribution for linear oscillatory shear
flow, but has a non-Gaussian distribution for nonlinear steady state shear flow. This results
in a fundamental difference betweenM andQ. The memory functionM in oscillatory shear
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Figure 7. Calculated and measured relaxation time compared as a function of volume fraction
for silica spheres in cyclohexane [3].

flow is a function ofωτ only. The memory functionQ in steady state shear flow depends
not only on the shear rate, particle size, and volume fraction, but also on the effective shear
viscosity, which has to be solved simultaneously with (20)–(22), (24), and (25). Therefore,
there is a time–composition superposition forM (see figure 9 in [3] and figure 1 in [8]),
but not for Q. This leads us to a familiar classification of viscoelastic behaviour: the
linear dynamic viscosity in oscillatory shear flow is rheologically simple, but the nonlinear
viscosity in steady state shear flow is rheologically complex.
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